Date of Award

8-16-2022

Document Type

Thesis

Degree Name

Computer Science, MS

First Advisor

Donghoon Kim

Committee Members

Hai Jiang; Hung-Chi Su

Call Number

LD 251 .A566t 2022 D53

Abstract

Android malware is a growing threat, coinciding with the increasing adoption of the Android platform. Malware detection methods used to maintain user privacy and system integrity are increasingly becoming the subject of research. Many new methods studied employ learning algorithms to detect malicious programs. This study investigates the use of byte and opcode frequency features as inputs for tree-based machine learning methods. The algorithm is optimized to reduce overfitting given input hyperparameter combinations and is tuned using cross-validation procedures. Lastly, the study deliberates on possible avenues for future research to gather more concrete evidence for the efficacy and cost-effectiveness of such a system in a productive environment, emphasizing the need for more strenuous testing processes.

Rights Management

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.