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ABSTRACT

Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders 
remain the No. 1 killer both in the United States and across the world, and innovative and transformative 
technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, 
the authors introduce different AI and machine learning (ML) tools including support vector machine 
(SVM), gradient boosting machine (GBM), and deep learning (DL) models, and their applicability to 
advance CV diagnosis and disease classification, and risk prediction and patient management. The ap-
plications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research in 
different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart 
disease, arrhythmias, valvular abnormalities, etc.

INTRODUCTION

Cardiovascular (CV) diseases claim the greatest number of deaths both worldwide and across the United 
States (Virani et al., 2021). The CV healthcare costs are enormous despite several advancements in di-
agnostic and therapeutic products. The CV system can be negatively impacted at various clinical levels. 
These broadly include heart valve abnormalities such as stenosis (narrowing) or regurgitation (backflow), 
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myocardial infarction (heart attack), heart failure, congenital heart disease (birth defects) and arrhyth-
mias (electrical defects). Thus, novel technologies such as those offered by artificial intelligence (AI) 
has potential to enhance further progress in the field and may offer significant improvements in health 
outcomes along with reductions in costs.

As one of the fastest emerging technologies, AI plays major roles in practically every sector of our 
daily lives. For example, virtual assistants such as Alexa, Siri or Google Assistant can help customers 
perform searches, order products online, answer questions, set reminders, adjust local environment, etc. 
Many e-commerce websites improve customers’ online shopping experience with personalized recom-
mendations and more streamlined buying processes. Voice verification, facial recognition, and biometric 
systems have been widely used to enhance security and surveillance.

AI also plays an increasingly important role in healthcare. AI and Machine Learning (ML) techniques 
have been widely used to improve both patient care and administrative processing. ML and Deep Learning 
(DL) techniques have been successfully applied to diagnose, analyze, and predict the course of various 
types of diseases, and in monitoring patient health conditions as well. Natural Language Processing 
(NLP) techniques can be used to understand and classify unstructured clinical documentations and as-
sist in structuring patient and medication information. AI systems and robotics are also helping with 
day-to-day administrative and routine functions of health facilities, thus reducing physical workload of 
medical personnel, minimizing human errors and maximizing efficiency.

AI and ML techniques have been applied to improve CV research and health (Figure 1). This chapter 
is aimed to provide an overview of AI advancements in diverse areas within the CV field, however, it is 
not meant be a complete resource of all developments. For a comprehensive collection, the readers are 
suggested to explore several published review articles (Antoniades, Asselbergs, & Vardas, 2021; Ben-
jamins, Hendriks, Knuuti, Juarez-Orozco, & van der Harst, 2019; C. Krittanawong et al., 2019; Mathur, 
Srivastava, Xu, & Mehta, 2020; Quer, Arnaout, Henne, & Arnaout, 2021). AI will also be discussed in 
the context of aforesaid disorders along with imaging, basic and biomedical sciences, precision medicine, 
drug discovery and development and robotics. The Coronavirus Disease 2019 (COVID-19) pandemic 
has significantly affected the CV health as well, (Abu Mouch et al., 2021; Chung et al., 2021; Farshidfar, 
Koleini, & Ardehali, 2021; Gedefaw et al., 2021; Nishiga, Wang, Han, Lewis, & Wu, 2020; Patil, Singh, 
Henderson, & Krishnamurthy, 2021; Rosner et al., 2021; Wenger & Lewis, 2021; Yiangou, Davis, & 
Mummery, 2021), however, this chapter will not delve into the topic, as a separate chapter is dedicated 
for COVID-19 in this volume. Before we dive into the clinical and biomedical aspects, we shall first 
introduce state-of-the-art AI and ML techniques, and subsequently discuss how those techniques are 
applied and are beneficial in diverse CV applications.
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STATE-OF-THE-ART AI AND ML TOOLS

As a part of AI, ML refers to the study of computer algorithms that improve automatically through 
experience and by the use of data (Mitchell, 1997). Based on the nature of the signal and feedback avail-
able to the learning system, ML can be divided into different categories including supervised leaning, 
unsupervised learning, semi-supervised learning, reinforcement learning, etc.

Supervised Learning

Supervised learning is one of the most common methods of ML. It builds a mathematical model, i.e., a 
mapping function, that maps inputs to the desired outputs based on a set of training examples of input-
output pairs. Here, the inputs X can be considered as features and the outputs Y can be considered as 
labels. Figure 2 shows a classic example of supervised learning. Classification and regression are the 
two major tasks in supervised learning. Classification is the process of finding the mapping function 
to map the input X to the categorical output Y. A model is trained on the training dataset aiming to 
categorize the data into different classes. For example, in a study by Sengupta et al. (P. Sengupta et al., 
2016), clinical data and the imaging data have been combined together to train classifiers to discriminate 
cardiac abnormalities. On the other hand, regression is the process of finding the correlations between 
dependent and independent variables, and the task of the regression is to find the mapping function to 
map the input X to the continuous output Y. For example, in a study by Lee et al. (J. Lee et al., 2016), 
regression models have been trained to predict fractional flow reserve from coronary computed tomog-
raphy (CT) angiography images.

Figure 1. Schematic of areas where Artificial Intelligence and Machine Learning impact Cardiovascular 
sciences and medicine.
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Common supervised learning algorithms include logistic regression (Gortmaker, Hosmer, & Lem-
eshow, 2013), linear regression (Seber & Lee, 2012), naive Bayes (Zhang, 2004), decision tree (Quinlan, 
2004), random forest (Cutler, Cutler, & Stevens, 2011), support vector machine (SVM) (Boser, Guyon, 
& Vapnik, 1996), k-nearest neighbors (KNN) (Altman, 1992), artificial neural network (ANN) (Daniel, 
2013), and ensemble learning methods (Rokach, 2010).

Logistic Regression

Logistic regression, also known as maximum-entropy classification, is a linear model for classifica-
tion. It is a statistical model that uses a logistic function to model probability of a certain class or event 
such as healthy/sick. It has been successfully applied in disease prediction including prediction of CV 
diseases for decades.

Linear Regression

Linear regression is a linear approach to model relationship between the input variables and target vari-
able by fitting a linear equation to observed data. It is a regression model commonly used to predict 
continuous values. For example, it can be used to predict the CV risk assessment score (Ismail & Anil, 
2014). Figure 3 shows graphical representations of linear and logistic regression.

Figure 2. Classic example of Supervised Learning. The labeled data and labels pass on to the model 
generating prediction of test data.
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Naive Bayes

Naive Bayes are simple probabilistic classifiers based on applying Bayes’ theorem with the “naive” as-
sumption of conditional independence between every pair of features given the value of the class variable. 
Despite the over-simplified assumption, the naive Bayes classifiers have worked well in many complex 
real-world situations. They only require a small number of training data to estimate the parameters for 
classification, and can be trained extremely fast compared to other sophisticated learning methods. In 
a study by Miranda et al. (Miranda, Irwansyah, Amelga, Maribondang, & Salim, 2016), naive Bayes 
classifiers had shown very promising results in detection of CV disease risk’s level for adults.

Decision Tree

Decision tree (DT) is one of the most popular supervised learning methods which can be used to solve 
both classification and regression problems. It has been widely applied in various CV applications. It 
is a non-parametric method that aims to create a model that predicts the value of a target variable by 
learning simple decision rules inferred from the data features. DT models are easily interpreted that have 
high accuracy and stability. DTs are also non-linear models which make them great for predicting and 
solving more complex problems. As shown in Figure 4, each node in the DT represents a decision binary 
on a feature, the branches from the nodes represent the outcome of the decision, and the last nodes of 
the tree (the leaves) represent the final classification/estimation of the data.

Figure 3. Graphical representation of Linear and logistic Regression
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Random Forest

Random forests are an ensemble learning method by constructing a multitude of decision trees at train-
ing time. Figure 5 shows an example of random forest ensemble learning. Similar to DT, they can be 
used to solve both classification and regression problems. For the classification tasks, the output of the 
random forest is the class selected by most trees. For regression tasks, the output is the mean or average 
prediction of the individual trees. Random forests generally outperform decision trees as they can help 
to correct the overfitting from single decision tree. They have been proven successful in many studies 
on CV disease classification and risk prediction (Xu et al., 2017) (Caballé, Castillo-Sequera, Gomez-
Pulido, Gómez, & Polo-Luque, 2020).

Support Vector Machine

Support Vector Machines or SVMs are one of the most robust prediction methods for classification and 
regression based on statistical learning frameworks. Generally speaking, the objective of SVMs is to 
find a hyperplane in an N-dimensional space that has the maximum margin, i.e. the maximum distance 
between data points of both classes to distinctly classify the data points. Samples on the margin are 
called the support vectors. Maximizing the margin distance provides some safety margin such that a 
slight error in measurement will not cause a misclassification, and future data points can be classified 

Figure 4. Architecture of a decision tree. The root and intermediate nodes test on features and the leaves 
predict the data.
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with more confidence. SVMs can be used to solve both linear and non-linear problems and work well 
on many practical problems including the CV applications. Through non-linear transformation, SVMs 
can project nonlinear separable samples onto another higher dimensional space by using different types 
of kernel functions. Common kernel functions include linear kernel, Radial Basis Function kernel, and 
polynomial kernel. For example, Figure 6 shows decision boundary for a binary classification problem, 
with three types of kernel functions.

Figure 5. Example of Random Forest Ensemble Learning. It works by aggregating output of different 
decision trees via majority vote or averaging to generate a final prediction.

Figure 6. SVM example - Decision boundary for Different Kernels. Dash lines plot support vectors of 
the models and the solid lines plot decision boundaries of different models.
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K-Nearest Neighbors

K-nearest neighbors (k-NN) is a non-parametric classification method which can be used to solve both 
classification and regression problems. In classification, the input consists of the k closest training ex-
amples in data set and the output is classified by a plurality vote of its k neighbors. While in regression, 
the output is the average values of the k nearest neighbors. The selection of the right k is crucial for the 
success of the algorithm. For example, a small value of k indicates that noise will have a significant 
impact on the result, while a large value makes it computationally expensive. One common application 
of k-NN on CV domain is heart disease prediction (Enriko, Suryanegara, & Gunawan, 2016). Although 
k-NN is a simple and easy-to-implement non-parametric algorithm, it should be noted that it gets sig-
nificantly slower as the number of examples or predictors increase. In addition, it is also very sensitive 
to the local structure of the data.

Artificial Neural Network

Artificial neural networks (ANNs) are computing systems in accordance with biological neural networks 
from animal brains. They can be used to model different kinds of complex, nonlinear or discontinuous 
relationships. As shown in Figure 7, ANN models consist of input layer, one or more hidden layers and 
output layer. In each of the layers in ANN, there are nodes called neurons. These nodes are connected 
to each other with associated weights and thresholds and processes the data in the network through a 
sum and transfer function. Based on the depth of layers in neural network, ANN models can be further 
divided into basic neural network and DL models. Basic neural network models usually contain less than 
or equal to three hidden layers while DL models normally consist of deeper networks with more than 
three hidden layers. We will discuss various DL algorithms in detail in later sections.

Ensemble Learning

Ensemble learning methods are techniques that combine multiple learning models together to improve 
predictive performance, which usually produce more accurate solutions than any of the constituent learn-
ing algorithm alone. Figure 8 shows an example of the ensemble learning system. Ensemble models 
tend to produce better results when there is a significant diversity among the models. As a result, many 
ensemble methods tend to promote diversity among the models they combine (Kuncheva & Whitaker, 
2003). Bagging method involves having each model in the ensemble vote with equal weight and is a 
common ensemble algorithm designed to improve stability and accuracy of model performance. The 
random forest algorithm that we introduced earlier is a bagging method. Boosting is another type of en-
semble method which involves incrementally building an ensemble by training each new model instance 
to emphasize the training instances that previous models misclassified. Adaptive Boosting (AdaBoost) 
(Freund, Iyer, Schapire, & Singer, 2003), is one of the most popular boosting method. It helps to com-
bine multiple “weak classifiers” into a single “strong classifier” by putting more weight on difficult to 
classify instances and less on those already handled well. Ensemble classifiers have been successfully 
applied in neuroscience, proteomics and medical diagnosis including clinical decision support system 
for CV disease (Eom, Kim, & Zhang, 2008).
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Figure 7. A basic ANN example with a 5-perceptron input layer, a 10-perceptron hidden layer and a 
4-perceptron output layer.

Figure 8. Example of ensemble learning output and prediction by providing same data to 3 different 
models and aggregating the output to final prediction.
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Unsupervised Learning

Unlike supervised learning that tries to fit input data with output labels, unsupervised learning works 
on its own to discover inherent structure within an input dataset without target labels. The three main 
tasks of unsupervised learning are clustering, association and dimensionality reduction (Hinton & Se-
jnowski, 1999).

Clustering

Clustering analysis is a task for grouping unlabeled data based on their similarities or differences such 
that within a group the observations must be as similar as possible, while observations belonging to dif-
ferent groups must be as different as possible. Figure 9 summarizes different types of cluster algorithms. 
Among them, hierarchical clustering and k-means clustering are the two main algorithms in clustering 
analysis. The k-means clustering algorithm assigns similar data points into k groups. The number k 
needs to be fixed in advance and it represents the size of the grouping and granularity. While hierarchi-
cal clustering is generally used for an unknown number of classes and helps to determine the optimal 
number. Clustering analysis has been used in many fields, including pattern recognition, image analysis, 
bioinformatics, etc. One common application of cluster analysis in CV research is to identify underlying 
risk factors for coronary artery disease (Guo et al., 2017). Unpublished data from Rajagopalan group 
using unsupervised hierarchical clustering showed significant alterations in expression of noncoding 
RNAs from left ventricles in a model of heart failure (HF) with preserved contractile function (expanded 
later) as seen in human disease. These findings offer enormous opportunities with potential diagnostic 
and therapeutic solutions in this type of HF for which there is no clear treatment available.

Figure 9. Types of Cluster Algorithms
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Association

Association is another type of unsupervised learning method that uses different rules to find relationships 
between variables in a given dataset. It is frequently used to identify items that have an affinity or often 
appear together. Figure 10 shows downward-closure property of the association method. It can also be 
used for identifying dependent or associated events as seen in a study (Nahar, Imam, Tickle, & Chen, 
2013) in which association rules have been used to detect factors which contribute to heart disease in 
males and females respectively.

Figure 10. The downward-closure property
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Dimensionality Reduction

Dimensionality reduction is a learning technique used when the number of features in a given dataset is 
too high. It is the transformation of data from a high-dimensional space into a low-dimensional space 
while still preserving data integrity. It can be divided into linear and non-linear approaches (van der 
Maaten, Postma, & Herik, 2007). Principal Component Analysis (PCA) is one of the most common linear 
techniques for dimensionality reduction. It is an orthogonal linear transformation that transforms the data 
to a lower-dimensional space such that the variance of the data in the low-dimensional representation is 
maximized. PCA has been widely used in signal processing, neuro-informatics, and bioinformatics. On 
the other hand, auto-encoder is a type of neural network used to learn non-linear dimension reduction 
functions and efficient codings together with an inverse function. It has been used in biomedical image 
processing, e.g., to remove noise from visual data to improve picture quality and also in drug discovery 
(Zagribelnyy et al., 2019).

Deep Learning

Deep Learning, DL, based on ANN with representation learning, has emerged as a new area of AI over 
the past decade (Yoshua Bengio, Courville, & Vincent, 2013; LeCun, Bengio, & Hinton, 2015). DL 
techniques can be used to extract complex and concealed information from large number of raw data 
using multiple hidden layers, i.e., tens or hundreds, where each layer is a representation that is a high-
level abstraction of the representation from the previous layer of the neural networks. The word “deep” 

Figure 11. Dimensionality Reduction via PCA, t-SNE, UMAP, LDA (reduced original data from 784 
dimensions to 3 dimensions)
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refers to the number of layers through which the data is transformed. The greater the number of hidden 
layers is, the deeper the network is. For example, when we build DL models for face recognition, the 
input may be a matrix of pixels from raw images, the first layer may abstract the pixels and encode edges 
from the image, the second layer may compose and encode arrangements of edges, the third layer may 
encode nose and eyes, and the fourth layer may recognize that the image contains a face and match the 
face with registered users.

Common DL models include convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), deep belief networks (DBNs), deep auto-encoder, etc. They have been widely used in speech 
recognition, computer vision, natural language processing, bioinformatics, robotics, drug design, medi-
cal image analysis and more. (Deng, 2014; Schmidhuber, 2015).

Convolutional Neural Networks (CNN)

CNNs are feed-forward neural networks inspired by mammalian visual cortex that contains very small 
neuronal cells sensitive to specific areas of the visual field, i.e., some neurons respond when exposed to 
vertical edges and some when exposed to horizontal edges (Hubel & Wiesel, 1962). All these neurons 
which appear to be spatially arranged in columnar structures are able to produce visual perception. 
Accordingly, CNNs are proposed with succession layers of convolution, activation, pooling, and fully-
connected layers to obtain the final outputs. The convolution layers are the most important part of a 
CNN, which are composed of a set of filters to extract different features from input data. For instance, 
the first convolution layer extracts low-level features such as lines, edges, and corners, and higher-level 

Figure 12. Classic Example of Deep Learning Neural Networks with a 5-perceptron input layer, 4 hid-
den layers with 8-perceptron, and a 4-perceptron output layer.
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layers extract higher-level features. CNNs are now the dominant approach for various computer vision 
tasks including medical image analysis.

Recurrent Neural Networks (RNN)

Distinct from CNNs with feed-forward networks, RNNs include feedback components that permit sig-
nals from one layer to be fed back to the previous layer (Olurotimi, 1994). Moreover, RNN is a type of 
deep neural network with an internal state (memory) which can be used to store long-term information 
and process variable length sequences of inputs (Y. Bengio, Simard, & Frasconi, 1994). In addition, 
RNNs can not only process single data points (such as images), but also entire sequences of data (such 
as speech and video). It should be noted that basic RNNs may fail to model long-term dependences of 
data and suffers from gradient vanishing. To overcome these drawbacks, Long-Short-Term Memories 
(Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (Cho et al., 2014) have been proposed. 
Both these models add gates and memory cells in the hidden layer to control the amount of information 
entering the unit, the amount that will be stored and the information that will be passed to the next units. 
RNNs have been introduced to various types of CV applications in the last few years. For example, in 
a study by Choi et al. (Choi, Schuetz, Stewart, & Sun, 2016), the RNN models were applied for early 
detection of HF onset.

BRIEF, SIMPLIFIED HEART ANATOMY AND PHYSIOLOGY

Human heart begins to form and function quite early in gestational period. The heart comprises 4 cham-
bers, 2 atria (upper) and 2 ventricles (lower). The right atrium receives deoxygenated blood from all 
parts of the body and pumps out to the lungs for purification via right ventricle and pulmonary artery. 
The left atrium receives oxygenated purified blood from the lungs and delivers to left ventricle. The left 
ventricle pumps the blood out with greater force and pressure to all parts of the body via the Aorta. The 
pumping activities are the result of specialized sarcomeric protein molecules within the major heart cells 
called cardiomyocytes. The repetitive mechanical activities of alternating contractions and relaxations 

Figure 13. A Comprehensive Guide to Convolutional Neural Networks. Eight convolution filters with 
128×128 input, 8 convolution filters with 64×64 input, 16 convolution filters with 48×48 input, 16 con-
volution filters with 16×16 input followed by 2 fully connected layers with 256 and 128 units respectively.
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are the result of immediately preceding electrical activities elicited by specialized cells residing at dif-
ferent regions of heart tissues.

Before entering and leaving each heart chamber, the blood passes through specific valves. The valves 
are specialized tissue flaps (leaflets) that act as one-way outflow orifices and prevent backward flow of 
blood. While the bicuspid (mitral) valve is located between left atrium and left ventricle, the tricuspid valve 
is located between right atrium and right ventricle. Correspondingly, the aortic valve is located between 
left ventricle and aorta, and the pulmonary valve is located between right ventricle and pulmonary artery.

APPLICATIONS OF AI IN CV SPACE

AI in Electrical Heart Disease

Fetal primitive human heart begins to beat towards later part of the first month of gestational period. In 
order for the heart to pump effectively for rest of the life, it is crucial that the beats are rhythmic and of 
optimal frequency. Abnormalities in electrical activities including conduction and rhythm (arrhythmias), 
inherited or acquired, may result in life-threatening CV anomalies such as ventricular tachycardia (VT) 
or ventricular fibrillation (VF).

Rogers et al. (Rogers et al., 2021) recorded 5706 ventricular monophasic action potentials during 
steady-state pacing in 42 patients with coronary artery disease and left ventricular (LV) ejection fraction 
(contractile function) £40%. Using SVMs and CNNs, they showed c-statistics of 0.90 for sustained VT/VF 
and 0.91 for mortality. In silico modeling also revealed higher L-type calcium current or sodium-calcium 
exchanger as predominant phenotypes for VT/VF. Future studies in relation to magnetic resonance (MR) 
imaging-determined scar or in vivo optical imaging would be valuable.

Atrial fibrillation (AF) is considered to be the most common rhythm disorder sometimes present-
ing with serious complications such as stroke. The UK DISCOVER registry comprising primary care 
population of greater than 600,000 individuals was studied using an ML prediction algorithm to detect 
AF (Sekelj et al., 2021). Results of this retrospective cohort study showed negative predictive value of 

Figure 14. Recurrent Neural Networks (RNN). X is the input layer, h is the hidden layer, o is the output 
layer. W, U, and V are weighting matrices of each connection among input, hidden and output layers. 
The (t-1), (t), and (t+1) are the time steps.



95

Cardiovascular Applications
 

96.7% and sensitivity of 91.8% among patients aged 365 years (n = 117,965). Attia et al. (Attia, Nose-
worthy, et al., 2019) employed CNN using Keras Framework with Tensorflow backend and Python to 
detect electrocardiogram (ECG) signature of AF present during normal sinus rhythm using standard 
10-second, 12-lead ECGs. They employed a total of more than 454,000 ECGs from almost 181,000 
patients and achieved 0.9 area under the curve (AUC). These strategies can help in the development of 
rapid, inexpensive, point-of-care approaches to detect AF.

The widely marketed Apple Watch with proprietary AI features in conjunction with Apple iPhone 
was tested for its ability to detect AF. In a population of almost 420,000 participants over a median of 
117 days of monitoring, the Turakhia group (Perez et al., 2019) aimed at estimating the proportion of 
notified participants with atrial fibrillation shown on ECG patch. Results showed that 84% of notifications 
were concordant with AF. To enhance the power of smartwatch towards multiple-lead ECGs, Spacca-
rotella et al. (C. A. M. Spaccarotella et al., 2020) placed the Watch in different body locations to obtain 
9 bipolar ECG tracings that correspond to Einthoven leads I, II, III and precordial leads, V1-V6 that 
were compared with simultaneous standard 12-lead ECGs. In a small population set of 100 participants, 
the findings offer promise by demonstrating that the device was able to record multichannel ECGs in 
agreement with standard ECGs with comparable ST-segment changes. Taken together, such approaches 
may help in timely detection and potential prevention of deadly complications including those resulting 
from myocardial infarction (expanded later), particularly, in asymptomatic individuals. In a case report, 
they were also able to show ST-segment changes reflective of the rare condition, Brugada syndrome 
similar to that documented in standard ECG following Ajmaline infusion in an adult male patient (C. 
Spaccarotella, Santarpia, Curcio, & Indolfi, 2021).

AI in CV Imaging

Imaging technologies play vital role in diagnosis and prognosis of CV diseases. With the development 
of ML and DL, AI has made remarkable achievements in cardiac imaging (Leiner et al., 2019). This 
includes improvements in imaging efficiency and quality along with automation in image analyses and 
interpretations to further assist in the detection and management of CV disorders.

Image Acquisition and Reconstruction

Various AI techniques including compressed sensing and real-time image processing have been applied 
to enhance cardiac imaging methodologies such as Cardiac CT and MR imaging in the past decade 
(Graff & Sidky, 2015; Kido et al., 2016; Vasanawala et al., 2010). Recently, DL models have been in-
troduced to further improve medical image acquisition and reconstruction. One study (Yang, Sun, Li, & 
Xu, 2016) proposed a novel deep architecture, dubbed ADMM-Net, which is defined over a data flow 
graph from iterative procedures in Alternating Direction Method of Multipliers algorithm for optimiz-
ing compressed sensing-based MRI models. Their proposed models can reconstruct MR images from a 
small number of under-sampled data in k-space, and thus accelerate data acquisition in MRI. Another 
study (Qin et al., 2019) proposed an advanced convolutional recurrent neural network model which can 
reconstruct high quality cardiac MR images from highly under-sampled k-space data by jointly exploiting 
dependencies of temporal sequences as well as iterative nature of traditional optimization algorithms. 
DL techniques have also shown high potential to reduce reconstruction time and improve visual image 
quality for highly accelerated 3D or 4D data. For example, Kustner et al. proposed a novel 4D (3D+time) 
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DL-based reconstruction network, termed 4D CINENet, for prospectively under-sampled 3D Cartesian 
CINE imaging (Küstner et al., 2020). The proposed model outperforms iterative reconstructions related 
to visual image quality, contrast, and reconstruction time.

Image Registration

ML and DL techniques have been applied to improve accuracy and speed for image registration as well 
(X. Chen, Diaz-Pinto, Ravikumar, & Frangi, 2020). DL models have been used to generate learnable, 
data-driven interpretations of similarity metrics, which outperform conventional similarity metrics in 
robustness and flexibility (Fan, Cao, Xue, & Yap, 2018; Haskins et al., 2018). Moreover, they have been 
widely used in estimating the parameters of spatial transformation for registration. In a study by Rohe et al., 
a novel fully convolutional network was proposed (Rohe, Datar, Heimann, Sermesant, & Pennec, 2017). 
It consists of contracting layers to detect relevant features and a symmetric expanding path that matches 
them together to output the transformation parametrization. The proposed model was used for inter-patient 
heart registration and has shown significant improvement over the state-of-the-art optimization-based 
algorithms. Another study (Sang & Ruan, 2020) proposed a convolutional auto-encoder network with a 
novel deformation representation model to achieve spatially variant conditioning on deformation vector 
field (DVF) for 3D cardiac MRIs, which can accomplish registration with physically and physiologically 
more feasible deformation vector fields, and improve the registration network performance significantly.

Image Segmentation

Image segmentation has a long history and various ML and DL approaches have been explored (Peng 
et al., 2016; Petitjean & Dacher, 2010). DL-based models such as CNNs, are currently the new state-of-
the-art in the field (Ronneberger, Fischer, & Brox, 2015). Such DL frameworks have been successfully 
applied on segmentation of MR images involving cardiac chambers by using pixel-based classification. 
For example, a standard CNN model was used to segment short-axis cardiac MR images (Romaguera, 
Perdigón Romero, Costa Filho, & Costa, 2017). Another approach is to perform regression to produce 
smooth epicardial and endocardial contours rather than pixel classification. In a study by Du et al., a 
deep belief network based regression segmentation framework was proposed to delineate boundaries of 
bi-ventricle from cardiac MR images (Du et al., 2018).

Diagnosis and Prediction

AI has been widely used in image-based cardiac diagnosis and prediction as well (Martin-Isla et al., 
2020). ML and DL models have been trained with conventional imaging indices, radiomics features, or 
raw imaging data for diagnosis of various types of CV diseases. In a study by Larroza et al., SVM models 
were used to predict myocardial infarction based on radiomics features extracted from MRI (Larroza 
et al., 2018). Wolterink et al. used random forest models for diagnosis of various cardiomyopathies by 
using conventional MRI imaging indices (Wolterink, Leiner, Viergever, & Išgum, 2018). Another study 
(Snaauw et al., 2019) proposed end-to-end DL models based on raw MR images for cardiac diagnoses.
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AI in Heart Attack

AI and ML techniques have been successfully applied to predict risk of heart attack, also referred as 
myocardial infarction. Numerous studies have applied ML models to predict cardiac events primarily 
in patients presenting with acute coronary syndrome (ACS). For example, both basic ML models such 
as random forests and DL models have shown high accuracy in prediction of 1-year mortality after 
hospital discharge in patients with ACS (Barrett, Payrovnaziri, Bian, & He, 2019; Sherazi, Jeong, Jae, 
Bae, & Lee, 2019).

AI and ML techniques have also contributed to heart attack risk management. In a study by Mandair 
et al., a deep neural network model was trained to predict 6-month incident myocardial infarction based 
on harmonized electronic health record (EHR) data from more than 2 million individuals (Mandair, 
Tiwari, Simon, Colborn, & Rosenberg, 2020). Another study (Knott et al., 2020) applied AI techniques 
to predict heart attacks and strokes by using perfusion mapping to provide instantaneous quantification 
of myocardial perfusion based on magnetic resonance. Recently, researchers at the University of Oxford 
(Oikonomou et al., 2018), developed a new “CaRi-Heart technology”, which can identify people at high 
risk of a fatal heart attack at least 5 years before it strikes. It applies a deeper observation into coronary 
CT angiogram scans based on DL models, and identifies a new biomarker, called Fat Radiomic Profile. 
This fingerprint detects biological red flags in perivascular space lining blood vessels which supply blood 
to the heart. It can more accurately identify inflammation, scarring and changes to these blood vessels, 
which are all pointers to future heart attack. This new AI tool measuring Fat Attenuation Index Score, 
FAI-Score is now reported to have received approval from the European Union, which can be used by 
physicians across the UK and Europe.

In another study (Poplin et al., 2018), scientists from Google Research discovered a new approach to 
assess risk of CV disease. They applied DL models to extract data using retinal fundus images from the 
back of patient’s eyes, and predict their risk of suffering a major cardiac event, i.e., heart attack, with 
comparable accuracy as current leading methods based on blood test.

Another interesting multi-center cross-sectional study tried to associate facial features with increased 
risk of coronary artery disease (CAD) (Lin, li, Fu, & etc, 2020). A deep convolutional neural network 
model was successfully applied to detect CAD (at least one coronary lesion stenosis >/= 50% based on 
coronary angiography or coronary CT angiography) using facial images in diverse Chinese populations 
(5796 patients). Although specificity was not high, the algorithm yielded a sensitivity of 0.8 and an AUC 
of 0.73. It also outperformed scores typically used in assessing CAD pre-test probability, interestingly, 
the part of the face that contributed the most to the algorithm’s predictions appeared to be the cheek. 
The proposed model can be used for pre-test CAD probability assessment in outpatient clinics or CAD 
screening in community.

AI in Heart Failure

Heart Failure (HF) is the decreased ability of the heart to provide sufficient blood to all parts of the 
body. In patients with HF, the incidence of all-cause hospitalizations is 63% (Tuppin et al., 2014) and 
can account for more than a third of CV deaths. HF is responsible for 30% of avoidable hospitalizations 
(Mercier, Georgescu, & Bousquet, 2015), and remains the leading cause of hospitalization for people 
over 65 years of age (Duflos et al., 2020). The prevalence of HF continues to rise over time, with aging 
of the population and is expected to increase by 46% by 2030 (Braunwald, 2013; Virani et al., 2021). The 
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overall lifetime risks for HF range from 20% to 45% in those from 45 through 95 years of age. HF is the 
most frequent complication of MI associated with coronary artery diseases (the most common pathology 
behind adult CV disease) and also a critical prognostic factor. The chronic incidence of HF following 
MI is significantly high (Velagaleti et al., 2008). There are two broad types of HF—the well-studied HF 
with reduced ejection fraction (HFrEF) and the less well-understood HF with preserved ejection fraction 
(HFPEF). The former results in impaired ventricular systolic (contractile) function, while the latter is 
more prominently associated with impaired ventricular diastolic (relaxational) properties with systolic 
function not significantly impaired. HFpEF may be observed in about 55% of patients diagnosed with 
HF making it a major unmet need necessitating attention (Bursi et al., 2006).

Although the recent Sacubitril/Valsartan is considered as the first drug approved for HFPEF, the 
combination did not achieve primary endpoint of significantly lowering rate of total hospitalizations for 
heart failure and death from CV causes among patients with HF and an EF of 45% or higher based on 
PARAGON trial (Solomon et al., 2019). However, the current indication also serves patients who are 
sometimes referred as those with mid-range EF (Branca, Sbolli, Metra, & Fudim, 2020), but in the range 
adjacent to reduced EF. Such issues expose the complexity and the need to understand pathophysiology 
and biology of the umbrella of HFPEF, and AI offers the potential to study the patient population in a 
large-scale manner and may identify subgroups that are more suitable for available treatment options 
(Kitzman et al., 2010; Luo, Ahmad, & Shah, 2017; Pitt et al., 2014).

One study (Cole et al., 2015) concluded that reproducibility of visual grading of LV function and 
LVEF estimation of echocardiographic cine loops is dependent on image quality, however, individual 
operators could not themselves identify when poor image quality disrupts their LV function estimate. 
Nonetheless, coupled with the revolutionary point-of-care ultrasound and handheld imaging devices, AI 
may play important role in improving consistency, reproducibility, accuracy, accessibility and afford-
ability. Using a CNN trained with Keras with a Tensorflow backend, a study from Mayo clinic was able 
to detect patients with suspected EF less than or equal to 35% with ECG alone (in the absence of prior 
transthoracic echocardiogram) (Attia, Kapa, et al., 2019). The study also suggested that false positives 
may be reduced by assessing NT‐pro‐BNP (an important biomarker for HF) after the initial “positive 
screen.” Porumb et al. (Porumb, Iadanza, Massaro, & Pecchia, 2020) showed that their CNN model ac-
curately (100%) identified congestive HF on the basis of single raw ECG heartbeat. The study trained 
and tested using publicly available ECG datasets with a total of over 490,000 heartbeats. In a small 
patient population, Nirschl et al. (Nirschl et al., 2018) tested a CNN classifier to detect clinical HF from 
Hematoxylin & Eosin stained whole-slide images. The algorithm was able to show 99% sensitivity and 
94% specificity in detection of HF or severe pathology. The CNN was also reported to have outperformed 
two expert pathologists by nearly 20%.

Recently, Cerna et al. (Ulloa Cerna et al., 2021) showed that their CNN trained on raw pixel data in 
812,278 echocardiographic videos from more than 34,000 individuals provided superior predictions of 
one-year all-cause mortality. The predictions outperformed the widely used pooled cohort equations, 
the Seattle Heart Failure score, and a ML model involving 58 human-derived variables from echocar-
diograms and EHR-derived 100 clinical variables. They also showed that cardiologists assisted by the 
model, while maintaining prediction specificity, substantially improved sensitivity of one-year all-cause 
mortality predictions by 13%.
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AI in Valvular Heart Diseases

Another chronic and progressive condition in patients with CV diseases is valvular heart disease which 
presents with increasing prevalence especially in growing aging populations including in the Western 
world (J. Chen, Li, & Xiang, 2020). They may also be detected at later stages of disease development 
and needs novel approaches for earlier diagnosis and therapy.

Stenosis (narrowing or constriction) of heart valves is a relatively common and potentially fatal 
condition (Pawade, Newby, & Dweck, 2015). It is characterized by progressive fibro-calcific remodel-
ing and thickening of the valve leaflets that evolve over years to can cause severe obstruction to cardiac 
blood flow. Aortic valves are crucial for directing blood flow from LV to aorta, and calcific aortic valve 
disease is considered to be the third most common form of heart disease. Diagnosis and staging of aortic 
stenosis are based on assessment of severity of obstruction and LV systolic function by doppler echocar-
diography and presence of symptoms (Lindman et al., 2016). Chang et al. (Chang et al., 2021) aimed to 
develop a DL-based algorithm for automated quantification of aortic valve calcium from non-enhanced 
electrocardiogram-gated cardiac CT scans. Their accuracy of DL-measured valve calcium volume for 
grading was 97.0% with AUC of 0.964 in the test set. In addition, accuracy of DL-measured Agatston 
score for grading was 92.9% with AUC of 0.933 in the test set thus outperforming radiologist reader 
group. In ML, weak supervision relies on noisy heuristics to programmatically generate large-scale, 
imperfect training labels. In order to overcome barriers to use of unlabeled biomedical repositories (e.g., 
UK Biobank) for supervised ML, Ashley, Ré and Priest groups (Fries et al., 2019) developed a weakly 
supervised DL model for classification of aortic valve malformations using up to 4,000 unlabeled cardiac 
MR sequences. In the orthogonal validation study using health outcomes data, their model identified 
individuals with a 1.8-fold increase in risk of a major adverse cardiac event.

Similar to the aortic valve, AI application has also been explored for disease of mitral valve (crucial 
for directing blood flow from left atrium to LV). One study aimed to generate an ML-based algorithm 
to predict in-hospital mortality after Transcatheter Mitral Valve Repair in a total of 849 patients (Her-
nandez-Suarez et al., 2021). Using random forest and SVM approaches, the authors showed that history 
of coronary artery disease, chronic kidney disease and smoking were the three most significant predic-
tors of in-hospital mortality. Nonetheless, the study warrants additional studies with contemporary and 
more granular data to improve the model’s discriminatory performance and applicability. Another study 
presented preliminary experience of an AI-based semiautomated software for analysis of tricuspid valve 
(crucial for directing blood flow from right atrium to right ventricle) (Fatima et al., 2020). The authors 
concluded that the software offered high correlation to surgical inspection throughout the cardiac cycle 
with higher reproducibility of data analysis, and reduces interobserver variability with minimal need 
for manual intervention.

In another study of 13,639 eligible patients extracted from the Chinese Low Intensity Anticoagulant 
Therapy after Heart Valve Replacement database (all 3 valves above) from 15 centers across China, the 
authors reported that Back Propagation Neural Network model showed promise for predicting warfarin 
maintenance dose after heart valve replacement compared with multiple linear regression model (Li et 
al., 2020). The former presented a higher ideal prediction percentage in external validation group, best 
prediction accuracy in intermediate-dose subgroup, high predicted percentage in high-dose subgroup 
and poor performance in the low-dose subgroup.
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Furthermore, mobile AI-enabled stethoscopes and FDA-approved softwares used with digital stetho-
scopes in smartphones or computers are useful for automated detection of cardiac murmurs (unusual 
sounds across heart valves) including automated heart rate detection. Although they may not offer 
complete explanation for the decision provided and are more expensive than conventional stethoscopes 
(Thoenes et al., 2021), they can serve as cost-effective screening tools and reduce over-referrals to echo-
cardiography, and can be more user- and telemedicine-friendly.

AI in Birth Heart Defects

Congenital Heart Diseases (CHD) are defects in one or more structures of the heart and associated 
anatomy and are generally present from birth. These can be life-threatening with significant negative 
impact on function of the heart, especially directionality of blood flow and oxygen saturation, and are 
mainly seen in pediatric population with significant hereditary component. Diagnostic and therapeutic 
advancements have enabled newborns with CHD to survive through childhood and well into adulthood. 
In addition, some disease conditions may not manifest until later in adult life. AI tools can be used for 
diagnostic imaging (classification and segmentation), clinical outcomes prediction and also disease 
prevention (Orwat, Arvanitaki, & Diller, 2021).

Diller et al. (Diller et al., 2019) studied over 10,000 patients with adult CHD from a single institu-
tion with neural network architecture designed in R using Keras and Tensorflow. Algorithms based on 
over 44,000 medical records categorized diagnosis, disease complexity and NYHA class with all their 
accuracies above 90% in the test sample. Cardiac MR offers reliable analysis of cardiac function and 
anatomy in CHD; however, analysis can be time-consuming. To circumvent this issue, Karimi-Bidhendi 
et al. (Karimi-Bidhendi et al., 2020) developed an automated deep fully convolutional network-based 
model showing strong agreement with manual segmentation, and no significant statistical difference 
was found by two independent statistical analyses.

Chest radiography with X-rays is one of the most widely used diagnostic tools across the world for 
CV and related disorders including CHDs. However, their predictive value can be limited by subjective 
and/or qualitative nature of interpretation. In a study using deep CNN approach developed by Google 
already trained with everyday color images from ImageNet, the diagnostic concordance rate of the DL 
model was significantly high (Toba et al., 2020). Although the model was not highly sensitive for detect-
ing a high pulmonary to systemic flow ratio, the specificity was 0.95, and the AUC was 0.88.

While several genes associated with CHD have been identified and characterized so far, many more 
are yet to be discovered (Pierpont et al., 2018; Sifrim et al., 2016). Bicuspid aortic valve (aortic valve with 
only two cusps/flaps instead of three) is the most common congenital valvular heart disease (0.6%–1.0% 
of adult population), and is attributed to be the primary cause of about half of isolated severe aortic 
stenosis discussed earlier requiring aortic valve replacement. It is also frequently associated with aortic 
aneurysm and aortic dissection (LeMaire et al., 2011; Yutzey et al., 2014). The Srivastava group (The-
odoris et al., 2021) developed a K-nearest neighbors ML algorithm approach to identify small molecules 
that broadly correct gene networks dysregulated in N1 haploinsufficiency in isogenic human induced 
pluripotent stem cell-derived endothelial cells from patients with aortic valvular stenosis and calcific 
aortic valve disease relevant to bicuspid valves. Gene network correction by the most efficacious thera-
peutic candidate (XCT790) generalized to patient-derived primary aortic valve cells and was sufficient 
to prevent and treat N1-dependent aortic valve disease in vivo in a mouse model.
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AI in Basic and Biomedical CV Sciences

AI technologies have been successfully employed in the understanding of biological, developmental and 
preclinical aspects of CV sciences. Ahmad et al. (Ahmad et al., 2014) combined ML sequence features 
with chromatin immunoprecipitation data for key cardiac regulators to computationally classify cell 
type-specific cardiac enhancers of Drosophila melanogaster (fruit flies). Using these strategies, the 
authors identified heart regulatory elements on a genome-wide scale, their shared and unique sequence 
motifs, and novel cardiogenic transcription factors. They also validated computational predictions using 
in vivo experiments. In addition, they identified novel cardiac and cell type-specific regulatory motifs 
by clustering top-scoring classifier sequence features.

Stem cells have had a resurgence in CV research over the past two decades and development of plu-
ripotent stem cell-derived cardiomyocytes and engineered cardiac tissues have made significant progress. 
The potential for applications in cardiac regeneration and drug screening is enormous. In a recent study, 
Lee et al. (E. K. Lee et al., 2017) described use of supervised ML to comprehensively analyze several 
functional parameters from force readouts of human pluripotent stem cell-derived ventricular cardiac 
tissue strips electrically paced at a range of frequencies and exposed to a library of drug compounds. 
Each contraction of the myocytes was considered as an individual data point for the ML analysis. They 
developed a classification model that can not only automatically determine if a compound is cardioac-
tive, but can also predict mechanistic action of unknown cardioactive drugs.

Imaging at histological, cellular and molecular levels are becoming inevitable aspects of fundamental 
research in CV biology. Improvements in automating detection, localization and analyses of cellular 
organelles and molecules are crucial for better efficiency and quality of research. In a study by Orita et 
al., (Orita, Sawada, Matsumoto, & Ikegaya, 2020) the authors optically detected contractility of confluent 
cultured human-induced pluripotent stem-cell-derived cardiomyocytes using bright-field microscopy. 
They reported discrimination between functionally normal and abnormal contractions of the stem cell-
derived cardiomyocytes using data preprocessing, data augmentation, dimensionality reduction and SL.

Ali et al. (Ali, Nguyen, Wang, Jiang, & Sadek, 2020) developed a proof-of-principle methodology to 
detect cardiomyocyte nuclei and distinguish from nonmyocyte nuclei using a global nuclear stain (DAPI) 
along with cardiomyocyte structural protein (troponin T) immunostained images from 8 μm-thick, frozen 
sections. Ground truth nuclei labeling was accomplished by immunostaining young adult alpha myosin 
heavy chain promoter-driven transgenic mouse cardiac tissues for Cre recombinase. Using an image-
to-image DL U-net style architecture model with TensorFlow, the authors showed that the prediction 
closely matched expectations with an AUC of about 0.94. Further development of such models will also 
help in the assessment of pathological clinical samples routinely used for CV patients.

AI in CV Drug Discovery and Development

AI plays crucial roles in current drug discovery and development strategies. Many biopharmaceutical 
companies, including Bayer, Roche, and Pfizer have worked very closely with information technology 
companies from drug discovery to pharmaceutical product management (Mak & Pichika, 2018). ML 
algorithms such as random forest, naive Bayes, SVM as well as DL models including CNN, RNN, and 
autoencoder have been included in diverse sectors in CV drug discovery including drug design, chemi-
cal synthesis, polypharmacology, drug repurposing, and drug screening (Jing, Bian, Hu, Wang, & Xie, 
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2018; Patel, Shukla, Huang, Ussery, & Wang, 2020; Paul et al., 2020; Vamathevan et al., 2019; Yeung, 
Benjamins, van der Harst, & Juárez-Orozco, 2021).

In drug design, AI techniques and ML models can be used to determine drug activity, predict 3D 
structure of target protein and drug-protein interactions and improve the molecular de novo design. For 
example, studies using deep generative adversarial autoencoder or generative adversarial network with 
transcriptomic data have shown their potential to generate new or hit-like molecules (Kadurin, Nikolenko, 
Khrabrov, Aliper, & Zhavoronkov, 2017; Mendez-Lucio, Baillif, Clevert, Rouquie, & Wichard, 2020). 
In polypharmacology, DL models have been successfully applied to help the design of bio-specific and 
multi-target drug molecules. ML and DL models have been widely used in chemical synthesis studies 
as well such as predicting retrosynthesis pathways and designing synthetic routes. In drug screening, 
AI has shown advantages in prediction of toxicity, identification and classification of target cells, etc. 
(Lavecchia, 2019).

In late 2020, the Google AI offshoot, DeepMind presented a revolutionary breakthrough in the world 
of fundamental biology by developing DL algorithm to accurately predict three-dimensional structure 
of protein using physical and geometric constraints that determine how a protein folds (Callaway, 2020). 
Instead of predicting relationships between amino acids, the network predicts a target protein sequence’s 
final structure. This, AlphaFold, has huge implications and offers optimism in the ability to develop drugs 
to combat numerous pathologies including CV diseases. The methodology has recently been published 
(Jumper et al., 2021; Tunyasuvunakool, et al., 2021) as open source code, and this could open enormous 
opportunities both for industry and academia to advance various fields forward.

AI in Precision CV Medicine

Precision medicine is a relatively new approach to disease prevention and treatment, which try to optimize 
medical care provided to individual patients by considering factors such as their genetics, environment, 
and lifestyle. AI and ML play especially important roles in advancing precision medicine (Ho et al., 
2020; Subramanian et al., 2020). By integrating existing medical variables, multi-omics, lifestyle, and 
environmental data together, AI techniques have great potential to digitize future clinical trials, and 
discover novel therapies (Chayakrit Krittanawong, Johnson, Hershman, & Tang, 2018). They have been 
applied in CV medicine to explore novel genotypes and phenotypes in existing diseases, enable cost-
effectiveness, improve the quality of patient care, and reduce readmission and mortality rates (Chayakrit 
Krittanawong, Zhang, Wang, Aydar, & Kitai, 2017).

In a study by Choi et al., RNNs with gated recurrent units were used to model temporal relations 
among events in EHRs, which can improve model performance in predicting initial diagnosis of HF 
(Choi et al., 2016). Another study (Juhola, Joutsijoki, Penttinen, & Aalto-Setälä, 2018) showed that it 
was possible to separate different genetic cardiac diseases on the basis of Ca2+ transients by using basic 
ML methods including KNN, Random Forest and SVM models. AI and ML techniques are commonly 
used in high throughput differential gene expression analyses as well, which can be used to identify genes 
that are altered in patients but not in controls. For example, PCA and logistic regression models were 
used to investigate relationship between familial hypercholesterolemia mutations and high polygenic 
score, to early-onset myocardial infarction (Khera et al., 2018).

In addition, ML and DL techniques have been used to advance risk prediction and patient manage-
ment. For example, in a study by Zhao et al., different types of ML models including logistic regression, 
random forest, gradient-boosted trees, CNN, and Long-Short-Term Memories, have been applied to 
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predict 10-year CV events, by using the features extracted from longitudinal EHRs (Zhao et al., 2019). 
The prediction results show that all ML models perform significantly better than the American College 
of Cardiology and the American Heart Association pooled cohort risk equation. Another study (Bellot & 
Schaar, 2018) investigated the problem of personalizing survival estimates of patients in heterogeneous 
populations for clinical decision support. A novel probabilistic survival model which can flexibly cap-
ture individual traits through a hierarchical latent variable formulation was proposed to enable survival 
prognosis in heterogeneous populations.

AI in CV Robotics

Robotic surgeries have attracted a lot of attention recently. Many systems including the laparoscopy-based 
Da Vinci robot, the endovascular catheter platforms such as the Corpath system, and the more electro-
mechanically advanced Magellan robot, have been developed for CV surgery in the past decade. AI 
techniques can be used to enhance productivity and minimize scope of errors in robotic surgeries (Daglius 
Dias, Shah, & Zenati, 2020; Feizi, Tavakoli, Patel, & Atashzar, 2021; Jones, Reed, & Hayanga, 2020).

AI techniques can be used to improve surgical decision making by combining diverse sources of 
information including patient risk factors, anatomy and disease natural history. Rapid developments of 
computer vision, automatic control, and reinforcement learning make usage of autonomous and semi-
autonomous robotic systems more realistic, which may have great potential to reduce trauma to patients, 
improve surgical safety and shorten hospital stays (Moustris, Hirides, Deliparaschos, & Konstantinidis, 
2011). For instance, autonomous and semi-autonomous robots can provide faster and higher-accuracy 
procedures than surgeons, particularly for simple surgeries involving standard and repetitive operations 
(Shademan et al., 2016; Sousa et al., 2020). A retrospective analysis of 300 surgeries showed that inte-
gration of robotic-assisted minimally invasive direct coronary artery bypass procedures in the surgical 
landscape can be safely achieved and complication rates can quickly be reduced below those expected 
in traditional coronary artery bypass grafting (Van den Eynde et al., 2021)

Social robotics and our understanding of human-robot interactions are improving (Darling K, 2021). A 
recent study (Céspedes et al., 2021) investigating benefits of using socially assistive robots for long-term 
cardiac rehabilitation suggested that robots increase adherence and faster completion of rehabilitation 
program. The patients had more rapid improvement in their recovery heart rate, better physical activity 
performance and higher improvement in cardiovascular functioning.

Moreover, use of autonomous robots can reduce radiation exposure for clinicians performing remote 
procedures associated with use of digital subtraction angiography or for infectious exposures during 
crisis such as the COVID-19 viral pandemic.

FUTURE DIRECTIONS AND CONCLUSION

The potential of AI towards progress in CV sciences and health can be best realized by comprehensive 
integration of big data from various sources and aspects of both individual subjects and the environment. 
This could span across genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, 
physiomics, radiomics, foodomics, etc. Realistically, even algorithms well-designed for clinical applica-
tions may face executional challenges associated with availability of high-quality, annotated and structured 
data for algorithm training and validation, and of data that are representative of real-world conditions.
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In addition, some countries may have regulatory barriers in data sharing, privacy restrictions, intel-
lectual property considerations or incomplete reporting. To overcome some of these challenges including 
improving reproducibility and credibility of ML studies, standards have been developed by different 
groups (“Machine learning in translation,” 2021; Topol, 2020). These include Standard Protocol Items: 
Recommendations for Interventional Trials (SPIRIT), Consolidated Standards of Reporting Trials 
(CONSORT), Standards for Reporting of Diagnostic Accuracy Studies (STARD) guidelines, Checklist 
for Artificial Intelligence in Medical Imaging (CLAIM) best-practice guide and Proposed Requirements 
for CV Imaging-Related Machine Learning Evaluation (PRIME) (Cruz Rivera et al., 2020; Liu et al., 
2020; Mongan, Moy, & Kahn, 2020; P. P. Sengupta et al., 2020; Sounderajah et al., 2020). The Butte 
group (Norgeot et al., 2020) also developed Minimum Information about Clinical Artificial Intelligence 
Modeling (MI-CLAIM).

The future is bright for incorporation of AI in day-to-day aspects of the CV space both in healthcare 
practice and continuing research. Simplification and automation using AI protocols can allow CV experts 
to focus their energies on more pressing questions towards the universal goal of reducing mortality and 
morbidity and accelerate novel biological, diagnostic and therapeutic advancements.
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KEY TERMS AND DEFINITIONS

Arrhythmia: Arrhythmias are heart rhythm abnormalities that occur when electrical impulses that 
coordinate heartbeats are anomalous and can lead to impaired heart contraction or relaxation or both.

Artificial Intelligence: Artificial intelligence is the ability of computer systems to perform tasks 
that normally require human intelligence.

Deep Learning: A class of machine learning based on artificial neural networks that include multiple 
hidden layers to progressively extract higher level features from the raw data.

Genome: Complete set of genetic instructions needed to build and sustain an organism. This may 
include interactions of genes with one another and the environment (epigenome).

Heart Failure: Heart failure occurs when heart muscle does not pump sufficient blood to meet the 
demands of the body secondary to several conditions including heart attack, hypertension, heart valve 
disease, congenital (birth) heart defects, etc.

Machine Learning: A study of computer algorithms that can access data and use the data to learn 
by themselves.

Myocardial infarction: Sometimes referred as heart attack, myocardial infarction occurs when blood 
flow to the heart tissues is interrupted secondary to obstruction from buildup of fat and other substances 
within blood vessels called coronary arteries.
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