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INTRODUCTION

The main objectives of this paper are to: (1) 
critically review the basic traditional inventory 
model (S, Q), and (2) propose improved and rela-
tively simple formulations for the (s, Q) model 
that can be used by practitioners. The improved 
formulation produces service levels that are on 
average equal to the desired or intended service 
levels. In addition, the methodology may be 
extended to other common inventory models 
(e.g., R, S model) with relative ease.

Graves (1988) and Silver, Pyke, and Peter-
son (1998) recognized that stock are generated 
because of different circumstances or are kept 
for a variety of purposes without ear-marking 
them. A component of inventory, cycle stock, is 
generated to achieve economies of scale through 
batch production, batch material handling or 
transportation (Tsou, 2009). Technical issues 
are another reason for batch production, espe-
cially in process industries. Pipeline stock or 
work-in-process inventory, is generated because 
of processing or transfer lead time (Pettersen 
& Segerstedt, 2009). Another component of 
inventory, Anticipation stock, is accumulated 
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in industries that face demand seasonality 
(Toelle & Tersine, 1989). Such inventories are 
accumulated prior to periods of peak demand.

Safety stock, on the other hand, is a por-
tion of inventory kept to deal with the variation 
and uncertainty of supply and demand sources 
(Tomlin, 2006). The level of safety stock is a 
function of the degree of uncertainty in those 
sources, the desired level of customer service 
specified by the management and the associ-
ated costs. The importance of safety stock and 
its accurate calculation have become more 
important over time for at least two reasons. 
(1) With the lean manufacturing movement, 
small lot production and delivery, cycle stocks 
and pipeline stocks have decreased, thereby, 
increasing the chance of stock out (Domingo 
& Alvarez, 2007; Balakrishnan, Bowne, & 
Eckstein, 2008); (2) concern for bottom line 
and managers’ awareness of the underestima-
tion of inventory carrying cost have urged them 
to reduce inventories to the bare minimum. 
Under such circumstances, accurate calcula-
tion of safety stock naturally becomes more 
important (Louly & Dolgui, 2009; Hou, Zeng, 
& Zhao, 2009).

Silver et al. (1998) mentions five classes 
of criteria for determining the level of safety 
stock: through the use of a common factor, by 
considering shortage costs, based on service 
considerations, based on the effects of disser-
vice on future demand, and based on aggregate 
considerations. In retailing, wholesaling and in 
some manufacturing settings, the level of safety 
stock for individual items is incorporated in 
different inventory control policies to formu-
late a decision rule for order timing and order 
quantity for the item. There are basically four 
common inventory control systems (and several 
variations of them): order-point, order-quantity 
(s,Q), which is the subject of this article; order-
point, order-up-to-level (s,S); periodic-review, 
order-up-to-level (R,S); and periodic-review, 
order-point, order-up-to-Level. (R,s,S) (Buxey, 
2006). The explanation of notation is presented 
in Appendix A.

Most inventory control systems assume 
that the demand volume can reasonably be 

modeled by a normal distribution. Other 
theoretical probability functions such as Geo-
metric (Carlson,1982), Negative Binomial 
(Deemer, Kaplan, & Kruse, 1974; Ehrhardt, 
1979), Poisson (Archibald, 1976; Archibald 
& Silver,1978), or density functions such as 
Gamma (Burgin, 1975; Das, 1976), Lognormal 
(Presutti & Trepp, 1970), Exponential (Brown, 
1977), Logistic (Fortuin, 1980), Weibull (Shah, 
Shah, & Wee, 2009), and many more, have 
also been suggested by researchers in order to 
model demand or forecast error. However, due 
to model complexity associated with employing 
distributions other than the normal distribu-
tion, practitioners have largely preferred the 
latter one. For example, studies show that the 
effect of using demand distributions, other than 
normal, on inventory decision rules is usually 
small (e.g., Fortuin, 1980).

In formulating inventory decision rules, it 
has commonly been assumed that the true mean 
and standard deviation of demand volume are 
known. However, these parameters are seldom 
known and usually are estimated from sample 
historical data. These estimates are subject 
to sampling variation and hence are random 
variables. Inaccurate estimates of demand and 
supply parameters will increase costs such as 
stock-out and carrying costs. Therefore, robust 
demand and supply estimates may reduce 
inventory costs (Jacob & Wagner, 1989). The 
effects of sampling variability on the estimates 
of parameters are well established in the field 
of statistics (Kutner, Neter, Nachtsheim, & Wil-
liam, 2004; Stapleton, 2009; McCloskey, 2009). 
However, the authors have not yet encountered 
any publication that theoretically addressed 
this issue in the context of inventory control 
policies and the computation of safety stock. 
The existing literature has largely employed ad 
hoc simulation studies to address the sampling 
variation of these estimates as described.

A simulation study performed by Ehrhardt 
(1979) concluded that in a (R, s, S) system 
with setup, shortage, and holding costs, sample 
estimates of parameters did not seriously affect 
the optimal policy. Vaughn (1995) through simu-
lation analysis, showed that in (s, Q) systems 
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when sample estimates of mean and standard 
deviation of demand during lead time are used, 
the experienced service level had greater vari-
ability around its theoretical or target service 
level than if the true values of the parameters 
are used. Hojati (1996) suggested the use of the 
t distribution (instead of the standard normal 
distribution) to partially rectify this problem. 
Through simulation analysis, he showed that 
for a sample of size n=15 periods and a nomi-
nal (target) service level of 95%, the average 
realized service level over a large number of 
experiments was about 93% when a z-score was 
used. Under the same scenario, he showed that 
the average realized service level was about 
94% when a t score (from a t-distribution with 
n-1 degrees of freedom) was applied. Newer 
simulation, inventory, or supply chain studies 
such as the ones by Lee (2008), Mahamani, Rao, 
and Pandurangadu (2008), Shi and Xiao (2008), 
Chandra and Grabis (2009), Xiao, Luo, and Jin 
(2009), Muñoz and Torres (2009), Wang and 
Prabhu (2009), and Kattan and Khudairi (2010) 
do not address the effect of sample variability.

In this paper we discuss the shortcomings 
of the basic traditional inventory models as 
related to the effect of sample variability on 
the estimates of parameters of the distribution 
of demand during lead time. We propose im-
proved formulations that directly incorporate 
the sampling variation in these estimates. The 
proposed model is pragmatic and is easy to 
use. The paper will continue by discussing the 
basic traditional inventory models and then 
offers improved formulations for the (s, Q) 
system when the replenishment lead time is 
constant. We then compare the proposed and 
the traditional models in achieving the target 
service level through numerical demonstrations 
and from a theoretical standpoint. Finally, the 
overall findings of the research will be summa-
rized and potential extensions to this research 
are proposed.

THE BASIC TRADITIONAL 
INVENTORY MODEL

In this section, we exclusively consider the con-
tinuous review order-point order quantity policy 
(s, Q). The (s, Q) inventory model offers one of 
the simplest and most widely used decision rules 
among inventory control models. According to 
the policy of this model, an order of size Q is 
placed when the on-hand inventory reaches a 
predetermined level, s (the order point). The 
assumptions underlying this model are (Silver 
et al., 1998; Buxey, 2006):

1. 	 Demand per unit time, d, is a random vari-
able with stationary mean and variance. 
In addition, the demands in different time 
periods are independent.

2. 	 A replenishment order of size Q is placed at 
the moment the inventory position reaches 
s. This implies that the demand transactions 
are of unit size (or small quantity). In addi-
tion, the value of Q is predetermined and 
is independent of s.

3. 	 The demand per unit time follows a normal 
distribution with parameters 

dµ and dσ . 
In turn, the forecast error has a mean of 
zero and a standard deviation of dσ .

4. 	 It is assumed that shortage costs are high 
enough so that a high service level (a 
low probability of stock out) should be 
maintained.

Based on these assumptions, the demand 
(D) during a fixed lead time (Ld ) is Ld and 
follows a normal distribution with parameters, 
L

dµ , and L dσ . In the simplest case when a 
probability of a stock out, p , or a target service 
level of SL p* = −1 is specified, the order 
point, s, is determined as follows (The reader 
may refer to Appendix A for notation used):

Given,

P D s SL( ) *≤ = 	
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The random variable,

D
ZD

D

−
=

µ

σ
	 (1)

follows a standard normal distribution. A 
safety factor Z

SL*
is determined such that

Φ( )*Z SL
SL
= ∗ , where Φ() is the cumulative 

distribution of the standard normal. The mini-
mum order point (s ) is computed as follows:

s
ZD

D
SL

−
=

µ

σ
* 	

s Z
D SL D

= +µ σ* 	 (2)

This model produces an expected service 
level (over large number of items) equal to 
SL* . The quantity k L dσ is the amount of 
safety stock.

The formulation assumes that the true 
value of parameters L

dµ and L
dµ (or µ

D
and 

σ
D

when one deals with the distribution of 
demand during lead time, directly) are known. 
However, in practice the true value of these 
parameters are seldom known and only esti-
mates of those parameters from a sample of 
size n (most recent demands per period or most 
recent lead times) are available. It appears that, 
traditionally, researchers and practitioners have 
advocated the use of the following order point 
model (we refer to it as Model s ):

s Z
D SL D

= + ∗ˆ ˆµ σ 	 (3)

It is obvious that the average realized 
service level, SL , when estimates are used can 
deviate from the target service level, SL* . The 
magnitude of the deviation will potentially be 
larger when the sample size, n, is also small.

THE PROPOSED MODEL

As mentioned before, the basic traditional 
model, s Z

D SL D
= + ∗µ σ , assumes that the 

mean and standard deviation of demand during 
lead time for each item, µ

D
and σ

D
, (or demand 

per unit time, µ
d

and σ
d

) are known quantities. 
In practice, these parameters are usually esti-
mated by the sample mean and standard devia-
tion from the most recent observed demand 
data for each item. The sample mean, µ̂

D
, and 

sample standard deviation, σ̂
D

, are computed 
as follows:

µ̂
D

i
i

n

D

n
= =
∑
1 	 (4)

ˆ
( ˆ )

σ
µ

D

i
i

n

D
D

n
=

−

−
=
∑
1

2

1
	 (5)

Where, n is the number of most recent 
lead times considered. Substituting (4) and (5) 
for the true mean and standard deviation in (2) 
introduces two sources of variability, one due 
to the use of sample mean and the other due to 
sample standard deviation. We present two 
intermediate cases in order to make the proposed 
model clear.

Case 1. The Proposed Model: µ
D

Unknown

When σ
D

is known and only µ̂
D

is calcu-
lated from sample data and is substituted for
µ
D

, the distribution of D
D

− µ̂ is approxi-
mately normal with the following parameters:

E D
D

( ˆ )− =µ 0 	 (6)

Var D
nD D

( ˆ )− = +










µ σ2 1
1 	 (7)
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The derivation of (7) is shown in Appendix 
B. The variance component in (7), as illustrated 
in Figure 4 in the Appendix, is the sum of the 
variances from two sources:

1. 	 Variance within the probability distribution 
of the demand during lead time (σ

D
2 ), and

2. 	 Variance in possible location of the distri-
bution of the demand during lead time  
(σ
D
n2 / )

Based on (6) and (7), equation (1) can be 
restated as:

D

n

ZD

D

− −

+

=
µ̂

σ

0

1
1

	

And the minimum order point is defined 
by Models

1
:

s Z
nD SL D1

1
1

= + +∗µ̂ σ 	 (8)

This treatment of the sample variability 
of mean, as outlined above, is often termed a 
“prediction interval” in statistics, and is used to 
create a confidence interval estimate of the value 
of a randomly occurring individual item from a 
normal population (Kutner, Neter, Nachtsheim, 
& William, 2004; Stapleton, 2009; McCloskey, 
2009). It is most commonly used in regression 

analysis. However, to our surprise, the concept 
has not been addressed in applications such as 
the inventory control models.

The quantity SS Z n
SL D1

1 1= +*σ is the 
amount of safety stock generated by this 
model. Clearly, the safety stock (SS

1
) com-

puted under model s
1
is greater than the safety 

stock (SS ) computed under model s . One can 
conclude that the average service level (SL

1
), 

realized under models
1
, is greater than the 

average service level (SL ) realized under 
Model s . It is important to note that neither 
SL nor SL

1
are necessarily equal to SL*.

In order for Model s to produce a service 
level similar to Models

1
, its safety stock should 

be corrected by the factor SS SS
1

. This ratio 
can be simplified as follows:

SS

SS

Z
n

Z n

SL D

SL D

1
1
1

1
1

=
+

= +
*

*

σ

σ
	 (9)

or

SS SS
n1

1
1

= + 	

Thus, model s is equivalent to model s
1

and produces the same average service level 

Figure 4. An example of the sample estimate of the demand distribution location versus its 
unknown true location
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SL
1
if its safety factor,Z

SL*
, is corrected by the 

factor, 1 1
+
n

.

Case 2. The Proposed Model: σ
D

Unknown

When µ
D

is known and σ̂
D

is estimated 
from sample data, the distribution (1) does not 
follow a normal distribution, but the quantity 
D

D

D

−µ

σ̂
follows t with n-1 degrees of freedom. 

The minimum order point is defined by Model
s
2
:

s t
D n SL D2 1

= +
−

µ σ
, * ˆ 	 (10)

The quantity SS t
n SL D2 1

=
− , * σ̂ is the amount 

of safety stock generated by this model. The 
safety stock (SS

2
) computed under Model s

2

is larger than the safety stock (SS ) computed 
under Model s since t Z

p p1 1− −≥ for all 
1 0 5− >p . . One can conclude that the average 
service level (SL

2
) realized under Model s

2
is 

greater than the average service level (SL ) 
realized under Model s . The safety stock cor-
rection factor can be computed as follows:

SS

SS

t

Z

t

Z
n SL D

SL D

n SL

SL

2 1 1= =− −, ,*

*

*

*

σ̂

σ
	 (11)

or

SS SS
t

Z
n SL

SL
2

1=











− , *

*

	

Thus, model s is equivalent to model s
2

and produces the same average service level 
SL

2
if its safety factor, Z

SL*
, is corrected by 

the following factor: 
t

Z
n SL

SL

−1, *

*

.

Case 3. The Proposed Model: µ
D

and σ
D

Unknown

This case represents the most realistic en-
vironment. It is not difficult to show that under 
such conditions, the order point is calculated 
by the proposed model, Model s3:

s t
nD n SL D3 1

1
1

= + +
− ∗ˆ ˆ
,

µ σ 	 (12)

The quantity SS t n
n SL D3 1

1 1= +
− , * σ̂ is 

the amount of safety stock generated by this 
model. Obviously, SS

3
is greater than SS, SS1, 

and SS2. As a result, the average realized service 
level, SL

3
, is greater than SL , SL1, or SL2, 

and is equal to SL*. The safety stock correction 
factor can be computed as follows:

SS

SS

t
n

Z

t

Z n

n SL D

SL D

n SL

SL

3
1 1

1
1

1
1

=
+

= +
− −, ,

*

*

*

*

ˆ

ˆ

σ

σ
	

(13)

or

SS SS
t

Z n
n SL

SL

3

1 1
1

= +











− , *

*

	

Thus, model s is equivalent to model s
3

and produces the same average service level,
SL

3
, if its safety factor, Z

SL*
, is multiplied by 

the following safety stock correction factor 
(SSCF):

SSCF
t

Z n
n SL

SL

= +−1 1
1, *

*

	 (14)
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NUMERICAL 
DEMONSTRATIONS

The traditional method of calculating the reor-
der point (s Z

D SL D
= + ∗ˆ ˆ

( )
µ σ ) results in levels 

of safety stock which yield actual service levels 
which are below the nominal (target) service 
levels on average. Table 1 shows the actual 
average service levels achieved for nominal 
(target) service levels of 90%, 95%, and 99% 
based on selected sample sizes.

Figure 1 shows graphically the actual 
service levels with sample sizes of n= 2 through 
n = 30 periods for each of the three nominal 
service levels.

Clearly, as the sample size increases, the 
actual service level approaches the target level. 
However, relatively small samples of time 
periods are typically used in order to reflect 
recent demands. Use of the proposed model 
corrects the calculation of safety stock and 
makes the actual service level equal, on average, 
to the nominal level.

The traditional model for calculating reor-
der point and safety stock becomes equivalent 
to the proposed model, Model s3, by multiply-
ing the following safety stock correction factor 
(SSCF). A graph of safety stock factors is shown 
in Figure 2 for sample sizes of n = 2 through n 
= 30 and service levels of 90%, 95%, and 99%. 
For n = 2 and a 99% service level, the factor 
is off the graph at a value of 16.753. Selected 
numerical values of SSCF are shown in Table 2.

Table 2 shows that for a nominal service 
level of 95%, safety stock (as calculated by the 
traditional method) must be increased by 16.9% 
if a sample of n = 10 is used and by 5% if a 
relatively large sample of n = 30 is used. As the 
sample size increases, this correction factor 
approaches 1 (and becomes unnecessary). 
However, even for a very large sample of n = 
100, safety stock must be increased by 1.5% to 
achieve a nominal service level of 95%. Typi-
cally, relatively small samples of time periods 
are used in order to reflect recent demand. Thus, 
it is clear that the traditional method results in 
significantly understated levels of safety stock. 
The effects of (traditional) Model s, Models s1 
and s2, and the proposed Model s3 are shown 
graphically in Figure 3, under the assumption 
of a nominal service level of 95%.

Figure 3 shows: (1) the average actual 
service level provided by the basic traditional 
model, (2) the service level which would be 
realized if the model were corrected only for 
errors in estimating the mean, (3) the actual 
service level realized by correcting only for 
errors in estimating the standard deviation, and 
(4) the average service level realized by the 
proposed model, which corrects for both errors. 
Clearly, all three alternative models perform 
better than the basic traditional Model s. Only 
Model s3 (i.e., the Proposed Model) on average 
achieves the nominal service level, SL*, with 
small sample sizes.

Table 1. Actual vs. nominal service levels for selected sample sizes 

Actual Service Levels

Sample Size (n) Nominal SL = .90 Nominal SL = .95 Nominal SL = .99

5 0.8465 0.8962 0.9495

10 0.8736 0.9244 0.9731

20 0.8869 0.9375 0.9825

30 0.8913 0.9418 0.9852

60 0.8956 0.9459 0.9877

100 0.8974 0.9476 0.9887
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Figure 1. Actual vs. nominal Service Levels (SLs) based on traditional safety stock model, s

Figure 2. Factors required correcting safety stock calculated by the traditional models in order 
to achieve target level
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FURTHER DISCUSSION 
AND CONCLUSIONS

The importance of safety stock and its accurate 
calculation has become more important over 
time. However, the inventory models that have 
commonly been suggested in the literature could 
not produce (theoretically) accurate policies. 
A sound inventory model should incorporate 
many factors that characterize demand. Fac-
tors that characterize demand such as demand 
distribution, mean, and variance are seldom 
known, thereby are approximated or estimated 
from sample historical data. This paper focused 
on two sources of variability that are present 
when sample estimates of mean and standard 
deviation, instead of the true but unknown 
parameters, are used.

It is noticeable that the treatment of sam-
pling variability of sample mean has not gained 
attention in inventory management literature. 
On the other hand, the treatment of sampling 
variability was addressed with a limited scope 
through ad hoc simulation studies (Hojati, 
1996). This paper addressed the shortcomings 
of the basic traditional inventory models as 
related to sampling variations and indicated 
that these models, in general, understated the 
required safety stocks.

The proposed model has shown that the 
service level realized under the basic tradi-
tional models was on average smaller than the 
target or desired service level, especially when 
small sample size was used. We have developed 

several improved models that directly incorpo-
rated the sampling variations of estimates. 
Through numerical demonstrations, the service 
level realized by the traditional model was 
compared with several proposed models. The 
proposed model that incorporates both the vari-
ability of sample mean and standard deviation 
produces an average service level over many 
items (SL

3
) that is equal to the target or 

nominal service level, SL* .
We believe that the result of the proposed 

model is of special practical importance. In to-
day’s competitive global supply chain systems, 
inventory managers at every stage is trying to 
reduce the impact of bullwhip effect and thus 
must be very attentive to the true downstream 
demands (Kristianto & Helo, 2009) with 
minimum inventory costs (Mahamani, Rao, & 
Pandurangadu, 2008) to maximize profit (Shi 
& Xiao, 2008; Ma, 2008). Inventory managers, 
who are not aware of the potential effect of 
sampling variation of estimates on the realized 
service level, can face higher inventory related 
costs and lower customer satisfaction. Without 
being aware of the potential effect of sampling 
variation, managers may not be able to safeguard 
(e.g., applying a larger sample size) against 
potential unwarranted results.

Three decades ago, some researchers (e.g., 
Silver, 1981) referred to the control related cost 
as being a major reason for assuming that the 
true parameters of demand are known. In our 
opinion, the control related costs should be 
substantially less than the inventory related 

Table 2. Safety stock factors to achieve nominal service levels for various sample sizes 

Sample Size (n) Nominal SL = .90 Nominal SL = .95 Nominal SL = .99

5 1.311 1.420 1.764

10 1.132 1.169 1.272

15 1.084 1.106 1.165

20 1.062 1.077 1.117

30 1.040 1.050 1.076

60 1.020 1.024 1.036

100 1.012 1.015 1.022
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costs or the cost due to customer dissatisfaction 
because of the availability of information tech-
nology such as the Internet (Yan & Ghose, 2008) 
and automatic data capture technologies such 
as bar coding (Kattan & Khudairi, 2010) and 
RFID (Mondragon, Lyons, Michaelides, & 
Kehoe, 2006; Ozelkan & Galambosi, 2008; 
Soon & Gutiérrez, 2008). With a little addi-
tional complexity, any of the three cases of 
proposed model explained in earlier sections, 
produce results that are theoretically better than 
the basic traditional model. Therefore, we 
highly recommend the use of the proposed 
Model s

3
by managers because it is only mar-

ginally more complex than the traditional 
model but produces superior solutions – cus-
tomer service levels that on average are equal 
to the target service levels.

The procedure of this paper can be ex-
tended to other models such as (R,S), (R,s, S), 
and so on. A similar approach can be under-
taken to improve those inventory models that 
also treat the lead-time (L ) as a random vari-
able. Future research may also include compar-
ing the proposed model with other models in 

the literature in the quality of solutions they 
produce. Another extension of this research 
may consider demand distributions such as 
Poisson, binomial or uniform.
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APPENDIX A

Notation used in the paper 

td Demand per unit time (a stationary random variable)

dµ Expected total demand per unit time (population)

dσ Standard deviation of total demand per unit time (population)

µ̂
d Sample mean demand per unit time

σ̂
d Sample standard deviation of demand

D Demand during lead time (a stationary random variable)

µ
D Expected total demand during lead time

σ
D Standard deviation of demand during lead time

µ̂
D Sample mean demand during lead time

σ̂
D Sample standard deviation of demand during lead time

L Replenishment lead time (a constant)

SS Safety stock, in units

s Order point, in units

Q Order quantity, in units

SL* Target, nominal or desired service level

SL Realized service level

Φ() Cumulative distribution of the standard normal

R Review period

S Maximum inventory position
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APPENDIX B

Derivation of the Components of Variance

Var D
D

( ˆ )−µ 	

= + −Var D Var Cov D
D D

( ) (ˆ ) ( , ˆ )µ µ2 	

Assuming the true standard deviation of demand per unit time (σ2
D

) is known and since the 
demand in different time periods is independent, the covariance term drops and the variance 
equation becomes:

Var D
nD D
D( ˆ )− = +µ σ
σ2
2
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